RAVENNA Network Guide
For Merging Technologies Products
No part of this documentation may be reproduced in any form whatsoever or be stored in any data retrieval system without prior written permission of the copyright owners.

This documentation is supplied on an as-is basis. Information contained within this documentation is subject to change at any time without notice and must not be relied upon.

All company and product names are ™ or Registered Trademarks ® of their respective owners. Windows 7 is a trademark of Microsoft Corporation. Bonjour, the Bonjour logo, and the Bonjour symbol are trademarks of Apple Computer, Inc. RAVENNA is a registered trademark of ALC NetworkX GmbH and is used here under licence.

Merging Technologies makes no warranties express or implied regarding this software, its quality, performance, merchantability or fitness for a particular purpose. The software is supplied “as is” you, the purchaser, are assuming the entire risk of the results of using this Merging Technologies software.

In no circumstances will Merging Technologies, its owners, directors, officers, employees or agents be liable to you for any consequential, incidental or indirect loss or damages including loss of time, loss of business, loss of profits, loss of data or similar resulting from the use of or inability to use the Merging Technologies hardware and or software or for any defect in the hardware software or documentation.

Product features and specifications are subject to change without notice.

© Copyright Merging Technologies Inc. 2015. All rights reserved
Contents

1 Introduction 5
 Scope 5
2 Read First! 6
3 Introduction to RAVENNA Technology 7
4 MT Discovery 10
 Overview 10
 Using MT Discovery 11
 Additional Information 12
5 Merging RAVENNA Easy Connect 13
 Accessing Easy Connect 13
 Additional Details 17
6 TimeCode 19
 TimeCode Setup 19
 Setup Examples 24
7 Network Switch 30
 Certified switch 30
 Before Starting 30
 Dell Power Connect 2816 Switch Auto-configuration Procedure 31
 Dell Power Connect Manual Switch Configuration 41
 Switch Configuration 46
 Connecting Multiple Horus' to the Switch 54
8 Contacting Merging 55
 International Office: 55
 UK: 55
 USA: 55
9 Index 56
1 Introduction

RAVENNA is a solution for real-time distribution of audio and other media content in IP-based network environments. It was designed primarily by a company called ALC NetworX. RAVENNA utilizes standardized network protocols and technologies and can operate in existing network infrastructures. Performance and capacity scale with the capabilities of the underlying network architecture.

For more information about RAVENNA technology please see: Introduction to RAVENNA Technology on page 7 and:

http://ravenna.alcnetworx.com/

Scope

This document contains information about Merging Technologies RAVENNA systems. It has an introduction to RAVENNA technology and details about the two helper applications MT Discovery and Merging RAVENNA Easy Connect. There is also information about implementing more complex systems requiring a network switch.

For detailed information about the Horus interface and Pyramix and Ovation software please see their specific Guides.
Important! Do not connect anything other than RAVENNA devices to the Merging Technologies PCIe Ethernet Controller Card NET-MSC-GBEX1. The same applies when the connection from the card goes via the Merging certified Dell Power Connect 2816 switch.

Important! Please avoid changing a network address or disconnecting Ethernet ports on your system when MassCore RAVENNA is running. It is possible that this will cause your Horus connection to reset and result in gaps in your recording.
3 Introduction to RAVENNA Technology

Scope
The information in this chapter is provided as background of the philosophy and technology behind RAVENNA.

Overview
RAVENNA is a technology for real-time distribution of audio and other media content in IP-based network environments. Utilizing standardized network protocols and technologies, RAVENNA can operate on existing network infrastructures. RAVENNA is designed to meet the strict requirements of the pro audio market featuring low latency, full signal transparency and high reliability.

RAVENNA is suitable for deployment in many pro audio market segments including broadcast, live sound, studios the install market and location music recording. Possible fields of application include (but are not limited to) in-house signal distribution in broadcasting houses, theaters, concert halls and other fixed installations, flexible set-ups at venues and live events, OB van support, interfacility links across WAN connections and in production & recording applications.

In short, it represents a new take on the third generation form of audio interconnect, where the first generation of interconnect is analogue point-to-point copper, the second generation uses digital codes representing the analogue signal, conveyed point to point over copper or fibre-optic cabling and the third generation also employs digital codes representing the analogue audio but transported as packets over network infrastructure.

RAVENNA is very well suited to areas where complex audio routing / mixing systems are deployed. For example; in-house distribution in broadcasting centres and WAN connections to satellite studios, OB vans, where hook up to venues with the same infra-structure becomes simple, in venues themselves for local signal distribution and connection to just such OB vehicles when required. For live events and concerts it offers highly flexible temporary installation possibilities and in theatres, opera houses and houses of worship it can provide low cost local signal distribution. Notwithstanding all of the above, RAVENNA is also an excellent candidate for relatively simple point to point interconnects such as computer to audio interface.

However, RAVENNA, leaving aside the other advantages touted, is an open standard based on the ubiquitous IP protocol. Specifically, protocol levels on or above layer 3 of the OSI reference model. Since RAVENNA is purely based on layer 3 protocols, it can operate in most existing network environments. Unlike layer 1 or layer 2 solutions, it does not, in principle, require its own network infrastructure. IP can be therefore be transported on virtually any LAN and is used as the base layer for communication across WAN connections (including the internet). Although in most cases Ethernet will be deployed as the underlying data link layer, IP is in general infrastructure-agnostic and can be used on virtually any network technology and topology. All the protocols and mechanisms used in RAVENNA are based on well established and commonly used methods from the IT and audio industries and comply with various standards defined and maintained by the international standards bodies.
A RAVENNA system requires a carefully configured IP network, a master clock device and any number of RAVENNA enabled I/O nodes. The master clock can be either a dedicated device or any RAVENNA node capable of serving as a grandmaster. The preferred time domain reference is GPS. Simple streaming across a network can be achieved without any synchronization at all but in pro audio applications tight synchronization between all devices and streams is absolutely mandatory. While playback synchronization in most applications requires sample accuracy, one goal for RAVENNA is to provide superior performance by offering phase-accurate synchronization as an option thus rendering separate reference word clock distribution throughout a facility or venue redundant.

Flexibility

The system design approach allows for operation with or without centralized services for configuration / connection management. ALC NetworX recommends that basic device configuration (e.g. initial settings and setup of audio streams) should be executed via a web interface (http). However other methods may be used in addition or as an alternative.

Device discovery is accomplished with DNS-SD (via an mDNS or DNS service). In small networks, without DHCP / DNS servers, the zeroconf mechanism - a fully automatic, self-configuring method - is used for auto-IP assignment and service advertisement & discovery.

Streams available on the network are represented by SDP records with extended information (i.e. a clock domain identifier, RTP time stamp association etc.) Clients can connect to streams via RTSP or SDP/http.

Resilience

As you would expect RAVENNA supports redundancy. Although modern network infrastructures can be configured to guarantee a high level of transport security and reliable 24/7 operation for added security there is the option of full network redundancy. Each RAVENNA device can include two independent network interfaces which can be connected to independent physical networks. By duplicating any outgoing stream to both network links, any destination device will receive the full stream data on both network interfaces independently. If data from one link is corrupted, or one network link fails completely, the uncorrupted data is still present on the other link. Changeover in the event of the failure of a network link is automatic.
Streaming

Unicast

Unicast (one-to-one) is used in application scenarios such as an individual stream between two devices (e.g. a multi-channel stream between a console and a recorder/DAW). This uses a point-to-point connection between the sender and receiver. Since each additional receiver adds its own individual connection network traffic increases with every additional unicast stream.

Multicast

Multicast (one-to-many) streaming is used in scenarios where a single source is to be distributed to many potential recipients (e.g. program stream to journalists' desktops). At the sending end this only requires one connection per stream. Network switches are aware which participants (receivers) should receive any particular multicast and forward packets only to registered nodes. In multicast set-ups the network traffic only increases on the last (closest to receiver node) segment(s) of the network path.

Infrastructure

The network infrastructure must be able to transport IP packets and must support a number of standard operating protocols, e.g. RTP/RTPC for streaming since this is used widely and supports a wide variety of standard payload formats. Some of these formats are mandatory for all RAVENNA devices, others are optional. For example this protocol offers the possibility of standard media player applications subscribing to RAVENNA streams. Synchronization across all nodes is achieved via the IEEE1588-2008 (PTPv2 Precision Time Protocol). This is another standard protocol which can be used on IP. PTPv2 provides a means for synchronizing local clocks to a precision as defined in AES-11. Accurate synchronization can even be achieved across WAN connections when GPS is used as a common time domain.

Quality of Service

For the QoS (Quality of Service) protocol DiffServ has been chosen since it is widely supported by most modern managed switches. Since other traffic can co-exist with RAVENNA on the same network, RAVENNA traffic must be on the fast track. RAVENNA packets are assigned a high priority classification to ensure expedited transport across the network, while other packets with lower priority are treated as best-effort traffic. Even within RAVENNA there are different priorities assigned to different classes of traffic. Synchronization is assigned the highest priority, immediately followed by any real-time media traffic, while control and configuration traffic will be on a lower priority level. Any non-RAVENNA traffic would receive the lowest (standard) priority and be treated as best-effort traffic. Performance and capacity scale with the capabilities of the underlying network architecture.
4 MT Discovery

Overview

MT Discovery is a standalone application that searches your network(s) for Bonjour Services. It enables quick and easy access to Merging Technologies Web Services based on Bonjour, such as the Horus configuration page. These pages will be open in your computer’s default browser. MT Discovery can be used to update the Horus Firmware. Please refer to the Horus User Manual for detailed information about this procedure.

Note: The default web browser is determined by a computer setting, not from MT Discovery. It will most probably be one of the following applications:

- Microsoft Internet Explorer
- Apple Safari
- Mozilla Firefox
- Google Chrome.

Google Chrome or Apple Safari are recommended for use with Merging Technologies products.
Using MT Discovery

Launch MT Discovery
Launch the MT Discovery application from the Windows Start Menu:

All Programs > Merging Technologies > MT Discovery

or by clicking on the desktop icon.

![MT Discovery Window](image)

The MT Discovery application window displays a tree view of all the devices it finds on the Bonjour Network. It refreshes automatically when a device is connected or disconnected.

Groups

MT Discovery will sort all devices into groups automatically (displayed like folders), depending on the characteristics of the devices.

The different groups are:

- **RAVENNA Devices**

 This group contains devices which have the RAVENNA protocol enabled and sorts them into different subgroups:

 - Horus Devices
 - MassCore Devices
 - Asio/Core Audio Devices
 - Other RAVENNA Devices.

- **Emotion Servers**
- Pyramix Servers
- VCube MXFix Servers
- Ovation Servers
- Others

The Others group contains all Bonjour devices that could not be identified by MT Discovery. Printers are likely to be found in here.

Note: The number in brackets near a collapsed folder indicates how many devices this folder contains.

Actions

Right-clicking (Ctrl+click on Mac) on an item on the tree view displays a contextual menu, which lists the actions available for the item.

Open

Open is what you will want to do most of the time. It will show the main page of the device in your computer's default web browser. This can also be achieved by double-clicking on a device, or by hitting **Enter** when the device is selected.

Open Advanced

Open Advanced will attempt to display the main settings page of the device in the computer's default web browser. This can also be achieved by holding down **Ctrl** (Cmd on Mac) and double-clicking on a device, or by hitting **Ctrl + Enter** (Cmd + Enter on Mac) when the device is selected.

Note: Some devices will not support this, and your web browser will report a **404 - page not found** error. In this case, we recommend you access the main page with command **Open**, described above, then browse to the setup page in your web browser directly.

Expand / Collapse

Only available for Groups, shows/hides the contents of a folder in the tree view. This can also be achieved by clicking on the +/- sign on the left side, or by double-clicking on the Group name.

Color Coding

The color of RAVENNA Device entries indicates the network they are on. Same color = same network.

![Device Network Color Coding](image)

Note: Horus and MassCore entries must be the same color in order to work together in RAVENNA mode.

Additional Information

The MT Discovery application is located in the following folder:

On Windows

C:\Program Files\Merging Technologies\MTDiscovery

On Mac

TBA

On Linux

TBA
5 Merging RAVENNA Easy Connect

Overview
The RAVENNA Easy Connect utility is installed along Pyramix v8 and included in the ASIO and Core Audio Drivers package. This utility enables Horus users to connect the visible RAVENNA streams and route them accordingly to the desired I/Os.

Accessing Easy Connect
When Pyramix is launched with the VS3 Control Panel set to RAVENNA mode the RAVENNA Easy Connect utility is launched automatically and appears in the Windows system tray. Users who have installed the ASIO and Core Audio Drivers will also have the utility running in the respective tray.

Pyramix
The RAVENNA Easy Connect dialog is opened by:

View > Windows / Tools > RAVENNA Easy Connect

It can also be opened by clicking on the Pyramix toolbar icon:

Once the dialog is open the connection tree is displayed.

Easy Connect will see all the RAVENNA connections which are activated in the Horus module pages (as RAVENNA).
Local Computer RAVENNA Host
The left-hand column of the Easy Connect window shows the connections used on your MassCore system, ASIO or Core Audio host.

Network Accessible RAVENNA Device
The top right-hand entry in the Easy Connect window shows the available Horus units.

Expanding the Horus entry displays the **ins** (inputs) and **outs** (Outputs) available. These can be connected or disconnected (from drop down menu). If a Module Output Source is not set to RAVENNA it will not appear in the Easy-Connect Inputs and Outputs list.

Making a connection
Click on the module to be connected. It will be highlighted once clicked.
Right-click to access the drop-down context menu. Here you can connect or disconnect the module I/O.

![Easy Connect Context Menu](image)

Alternatively use the buttons in the lower part of the Easy Connect window to perform the connection or disconnection.

![Easy Connect Connect & Disconnect buttons](image)

Double-clicking on a RAVENNA module entry will Connect or Disconnect the module.

Once the module connection is made a Green icon will be displayed.

![Easy Connect Module Connection](image)
Connection Status

- **Not connected**
- **Connected correctly**
- **Connection Error** (see message displayed at bottom of Easy Connect window for details)
- **Partial connection**

A **Partial connection** indicates that the connection to the MassCore, ASIO or Core Audio host cannot be made. Please verify that the MassCore, ASIO or Core Audio host is available in the left-hand Easy Connect column. If it is present select the problematic input or output and disconnect it, then reconnect it.

If the MassCore, ASIO or Core Audio host is not present please exit and restart the application.

Note: Each Input and Output module is in blocks of 8 channels (except for Monitoring which is 2 channels)

Once connected the Inputs or Outputs will be available within the Pyramix Mixer for I/O connections.

Activated Connection Example

Once a RAVENNA connection has been enabled it will be made available in the Pyramix Mixer.

In the example below the AD1 input has been enabled:

![Easy Connect & Pyramix Connections](image)

TimeCode Connections

Horus TimeCode RAVENNA connections can also be enabled from RAVENNA Easy Connect:
Additional Details

A warning red sign on the Horus logo along with a pop message will warn the user that the Horus and Pyramix project are not at the same sampling rate.

![Horus 80059](image)

Configuration error: Roll the mouse over the Horus red warning to display the exact error:

![Horus 80063](image)

Or look at the bottom of the dialog.

Note: Horus and Pyramix sampling rates MUST match in order to enable I/O connections through RAVENNA Easy Connect.

Clear All Connections

All current connections can be cleared by right-clicking on the RAVENNA Easy Connect icon in the Tray to access the context menu and selecting **Clear Connections**.

![Easy Connect Tray Icon Context Menu](image)

You can also clear all connections using the button at the bottom of the Easy Connect Window:

![Easy Connect Clear All Connections button](image)

This will delete all the local RAVENNA connections made previously for all inputs and outputs. A confirmation pop-up window will appear. Click on **OK** to clear the connections or **Cancel** to abort.

Ctrl + Click on the **Clear All Connections** button will force a delete of **ALL** existing RAVENNA connections. Please be aware that this will clear connections that could be in use by other RAVENNA hosts. Ensure that you know what you are doing.

Lock to Pyramix Sampling Rate

RAVENNA Easy Connect also includes an option to lock the Horus to the Pyramix sampling rate.

![Force Host Sampling Rate to all connected Devices](image)

When active the MassCore system will always ensure that the Horus connected to it follows its sampling rate setting.

Note: When running with RAVENNA ASIO and Core Audio drivers the "Locked sampling rate" option is inactive, since Horus is the sampling rate master in such a configuration
Always on top
An option to display The RAVENNA Easy Connect window can be set to **Always On Top** in top from right-click context menu.

![Easy Connect Always On Top message](image.png)

Working with multiple Horus over a network
If you have multiple Horus's in your environment they must all be connected to a Merging certified switch. Please see: **Network Switch** on page 30

Each Horus will then appear in your RAVENNA Easy Connect utility where you will see the name of each Horus online. You will be able to make each Horus' I/O connections with the RAVENNA Easy Connect utility.

Troubleshooting
Sudden stoppage of RAVENNA Easy Connect
If the RAVENNA Easy Connect utility crashes or stops simply launch it again from the Windows Start menu under:

All Programs > Merging Technologies > RAVENNA Easy Connect > RAVENNAEasyConnect
6 TimeCode

TimeCode Setup

Horus/Hapi TimeCode Setup
TimeCode connections to Horus/Hapi are handled by Apple Bonjour.

Apple Bonjour MIDI Connection Discovery
This may be seen in:

Settings > All Settings > Hardware > MIDI Sync
rtt MIDI (Windows third party utility.)
MIDI Network Setup (Mac OSX)
Directory:

The list shows a real-time view of all the Apple MIDI participants discovered on the network.

Naming/Nomenclature

<table>
<thead>
<tr>
<th>Horus/Hapi_<SERIAL>_LTC_in</th>
<th>Physical LTC input (seen as MTC) used to receive Timecode to DAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horus/Hapi_<SERIAL>_LTC_out</td>
<td>Physical LTC output (seen as MTC) used to send out Timecode to Horus/Hapi</td>
</tr>
<tr>
<td>Horus/Hapi_<SERIAL>_midi_pre</td>
<td>Used to remotely access the Horus/Hapi MicPre</td>
</tr>
<tr>
<td>Horus/Hapi_<SERIAL>_TC_ref</td>
<td>Internal connection used to synchronize to a Video ref source</td>
</tr>
<tr>
<td><Computer Name>_LTC_in</td>
<td>MassCore virtual LTC input</td>
</tr>
<tr>
<td><Computer Name>_LTC_out</td>
<td>MassCore virtual LTC output</td>
</tr>
<tr>
<td><Computer Name>_LTC_ref</td>
<td>Internal connection used to synchronize to a Video ref source</td>
</tr>
<tr>
<td>Pyramix_<Computer Name>_sync</td>
<td>Pyramix shows a MIDI in/out connection for transferring MTC</td>
</tr>
</tbody>
</table>
Horus/Hapi LTC IN-OUT for Pyramix Native users

- Ensure that the Project Frame Rate is set to match the incoming TimeCode.
- Open Settings > All Settings > Hardware > MIDI Sync

- Add the Horus/Hapi LTC IN and Horus/Hapi LTC Out entries to the Participants list.
- Click on OK to save the settings and close the window.
- Open the Pyramix Transport window. [Alt + T].
- Set the Pyramix to Chase the MTC Reader.
• Pyramix will Generate MTC once a MIDI connection is on the Participants list.

Horus/Hapi LTC IN-OUT for MassCore users
MassCore users please refer to the RAVENNA Network Guide, use the Easy Connect TimeCode connections and set the Pyramix Transport to LTC Reader chase mode.

Note: We recommend NOT using the Settings > All Settings > MIDI Sync : Participant entries.
Third Party DAW on Windows

First download and install **RTP MIDI**:

- Ensure the Horus/Hapi is connected to your computer. (I.e. visible in MT Discovery.)

![rtpMIDI: using Apple Bonjour Setup tab](image)

- In the **rtpMIDI, Setup** tab click on the + icon in the **My Sessions** section to create a new MIDI port.
- For ease of use, change its Local name and Bonjour name to **Horus/Hapi_MTC**.

The **Directory** section shows the available streams.

- Select the **Horus/Hapi_SerialNumber_LTC_in** and click on Connect to add it to the Participants list.
- Select **Horus/Hapi_SerialNumber_LTC_out** and also add it to the Participants list.
- Enable the **Session** by checking the **Enabled** box to make the **Horus/Hapi MTC** available.

Note: Once configured correctly, it is not necessary to launch **rtpMIDI**, it will run as a service automatically at Windows start up.

Note: Any changes in **rtpMIDI** configuration may require a restart of the audio application.
Third Party DAW on Mac OSX

- Launch MIDI Network Setup

In MIDI Network Setup click on the + icon under My Sessions section to create a new MIDI port.

For ease of use, change its Local name and Bonjour name to Horus/Hapi_MTC.

The Directory section shows the available streams:

- Select the Horus/Hapi_SerialNumber_LTC_in and click on Connect to add it to the Participants list.
- Now select Horus_SerialNumber_LTC_out and also add it to the Participants list.
- Enable the Session by checking the Enabled box to make the Horus/Hapi MTC available.

Important! After a system restart you will need to reconnect the Participants.
Setup Examples

Pro Tools on Mac Example

• Ensure that the **Project Frame Rate** is set to match the incoming TimeCode in the **Session Setup** window.

• Open the ProTools **Peripherals** dialog:

![Pro Tools Peripherals dialog](image)

• Set MTC Reader Port to Horus_MTC and MTC Generator Port to Horus/Hapi_MTC if you require Pro Tools TimeCode on the Horus/Hapi LTC output.

• Ensure the Session is set up correctly:

![Pro Tools Session Setup](image)

• In the Transport window, activate the **Chase** Icon (and/or **GEN MTC** button if you require Pro Tools TimeCode on the Horus/Hapi LTC output).
Pro Tools on PC Example

Open the Session Setup dialog:

- Ensure that the Project Frame Rate is set to match the incoming Timecode in the Session Setup window.
- Open the Peripherals dialog.
- In the Synchronization tab set MTC Reader Port: to Horus/Hapi_MTC.

If Pro Tools Timecode is required on the Horus/Hapi LTC output set MTC Generator Port to Horus/Hapi_MTC.

And in the Transport window, activate the Chase Icon (and / or GEN MTC button).
Nuendo 5 Example
First ensure that the Project Frame Rate is set to match the incoming Timecode.

- Open the **Device Setup** dialog Devices > Device Setup:

![Nuendo 5 Device Setup: MIDI Port Setup](image)

- Activate the **Horus/Hapi_MTC** as MIDI In and MIDI Out.
Open Transport > Project Synchronization Setup:

- Set MIDI Timecode under Timecode Source and select Horus/Hapi_MTC under MIDI Timecode Settings.
- If Nuendo TimeCode is required on the Horus/Hapi LTC output, activate Horus/Hapi_MTC under MIDI Timecode Destinations, and check MIDI Timecode Follows Project Time.
Reaper Example

- Ensure that the Project Frame Rate is set to match the incoming Timecode in the Project Settings page.
- Open Preferences > Audio > MIDI Devices

- Enable Horus/Hapi_HTC in the MIDI inputs to make available... section, and check the Enable input from this device box in the Configure MIDI Input window.
- Right-click on the Transport window and select External Timecode Synchronization > Synchronization settings.

- In the Use Input field select MTC: MTC_Horus/Hapi.
- The Enable Synchronization to Timecode check box or [ALT + Right-click] on the Play button toggles external synchronization.
Magix Example

- Ensure that the Project Frame Rate is set to match the incoming Timecode in the **Project Settings** page.
- Open **System Options > MIDI**

- Enable **Horus/Hapi_MTC** in the **MIDI IN** and **MIDI OUT** sections.
- Click on the **Sync** button in the Transport window to open the **Project Synchronization** window:

- In the **MTC Input** and **MTC Output** sections, select **Horus/Hapi_MTC** as the **Device**, and activate **MTC input active** or **MTC Output active**.
7 Network Switch

Certified switch

At this time the only network switch certified by Merging Technologies for use with Horus - RAVENNA is the **Dell PowerConnect 2816** and others from the same series e.g. **Dell PowerConnect 2808, 2824, 2848**...

Before Starting

Important! If you have problems accessing the switch for configuration when connected to the Merging MassCore PCIe Ethernet card (NET-MSC-GBEX1) please connect it to the PC’s on-board Ethernet port. When configuration is completed reconnect the switch to the MassCore Ethernet card.

Important! Please avoid changing a network address or disconnecting Ethernet ports on your system when MassCore RAVENNA is running. It is possible that this will cause your Horus connection to reset and result in gaps in your recording.
Dell Power Connect 2816 Switch Auto-configuration Procedure

Note: For Dell Switches other than the 2816 and 2808 please use the manual configuration procedure: Please see: Dell Power Connect Manual Switch Configuration on page 41

1. Right click on the Network icon in the Windows Task Bar:

2. Select: Open Network and Sharing Center

3. Click on: Change Adapter Settings on the left of the pane.
4. Right-click the **Merging Technologies PCIe 8257 RAVENNA Network Card** and select **Properties**:
5. Select **Internet Protocol Version 4 (TCP/IP)** and Click on **Properties**:

![Internet Protocol Version 4 (TCP/IP) Properties](image)

6. Click on the **Use the following IP address**: radio button and enter **192.168.2.2** (the DELL PowerConnect 28xx switch has a factory default IP address of **192.168.2.1**). Click on the **OK** button to accept the settings and close the dialog.

7. Before connecting to the switch it must be put into **Managed Mode** since the factory default is non-managed mode. To change the switch to Managed Mode, use a paper clip to press the Managed Mode button through the small hole as indicated by the arrow in the image below:

![Dell PowerConnect 2816 Gigabit Managed Switch](image)
8. Open a browser and type **192.168.2.1** in the address bar, username: "**admin**" password: "**admin**", Click on the **OK** button to log in:
The Restore Saved Configuration page will open:

9. Click on the Apply Changes button. The device will reset* message will appear. Click on the OK button and wait for around 2 minutes:
10. Log in again (username: admin, password: admin) as in step 9. above.

11. Download the latest Dell Switch Configuration file named MT RAVENNA DPC2816_startup-config_1.x.ber available here:

http://www.merging.com/products/horus/downloads

The Merging RAVENNA configuration file will auto-configures various settings /protocols to optimize the RAVENNA network, and also sets the definitive fixed IP address of the switch: 169.254.252.1).

Note: A Dell Switch Configuration file is also available for the Dell Power Connect 2808 switch.
12. After login choose **System > File Management > File Download**

13. Select the **Configuration Download** and **Download via HTTP** radio buttons. (Arrowed in the screenshot above.) Click **Choose File** and browse to the **MTRAvenna_DPC2816_startup-config_1.x.ber** file. Then click **Apply Changes**.

 Note: For the Dell Power Connect model 2808 switch please use the appropriate file.
14. When the download completes, **Copy Finished**, click **Close**. The message box below will open:

![Message Box](image)

Message Box

15. The downloaded configuration will be activated after resetting the device. Click **OK**
16. Log out, power OFF and restart the switch.

Next operation is to restore the Merging RAVENNA Network Card's IP configuration back to automatic. (Auto configured IP addresses are in the range 169.254.x.x, range on which the switch is now configured.)

17. In the **Network Connections** window (see steps 4, 5, and 6. above), right-click the **Merging Technologies PCIe 8257 RAVENNA Network Card** and select **Properties** select the **Obtain an IP address automatically** radio button and also select **Obtain DNS server address automatically**, click on **OK**.
18. The switch is now configured and ready to use, and the Merging RAVENNA Network Card should have auto-configured itself with an IP in the 169.254.x.x range. You can verify this by opening a browser and typing 169.254.252.1 in the address bar, Log in (username: admin password: admin).

19. The switch is ready and accessible at 169.254.252.1
Dell Power Connect Manual Switch Configuration

First, connect the switch to the RJ45 port on the MassCore PCIe Ethernet card (NET-MSC-GBEX1).

Configure Network Addressing

The Dell PowerConnect 2816 switch comes with a factory default fixed IP of 192.168.2.1. So in order to access the switch’s web user interface we first need to set the Merging network card to a fixed IP on the same subnet as the switch.

1. Open the **Windows Control Panel** and open the **Network and Sharing Center**.
2. Select **Change adapter settings**
3. Locate and select the Merging Technologies PCIe Ethernet card connection and Right-click on it.
4. Select **properties** from the drop-down menu to open the **Local Area Connection Properties** dialog:

![Local Area Connection Properties dialog](image)

5. The networking tab should already have been configured as in the above screen shot by the Pyramix install. If this is not the case, please configure the card as seen above.
6. Select **Internet Protocol Version 4 (TCP/IPv4)** to select it and click on **Properties** to open the **properties** dialog.

![Internet Protocol Version 4 (TCP/IPv4) Properties dialog](image)

7. Choose the **Use the following IP address**: radio button.
8. Set the **IP address**: to **192.168.2.2**
9. Set the **Subnet mask**: to **255.255.255.0**
10. Click on **OK** to accept the settings and close the dialogue. Repeat to accept the settings and close the **Local Area Connection Properties** dialog.

Configure the Switch

1. To access the switch with a browser, the switch needs to be in Managed Mode. If the Managed Mode LED on the front panel of the switch is not lit, use a paper clip to press the Managed Mode button through the small hole on the front right of the switch. Once the Managed Mode led is lit, the switch offers a web gui. It is also possible to configure the switch using the 9-pin serial connection at the back of the switch. If this is how you want to configure it, please refer to the switch’s documentation.
2. Open a Web Browser (Internet Explorer is recommended for this configuration process.)
3. Enter **http://192.168.2.1** in the address bar and hit **Return** to access the Switch.
4. Login using the default credentials:
 - **user**: admin
 - **password**: admin

 (Depending on the exact switch this field may need to be left blank. If in doubt consult the Dell 2816 Switch user guide.)

Note: If you cannot access the Switch remotely perform a reset to default factory settings. On the Dell Power Connect use a paper clip and press and hold for around ten seconds the button accessed via the small hole labeled **Managed Mode** to the right of the RJ-45 connectors. Afterwards make sure the indicator light **Managed Mode** to the left of
the RJ-45 connectors is lit in order to access and configure the switch. (Press the button once again briefly if necessary.) Repeat the reset procedure in the future if remote access does not work first time. It may take two or three minutes for the switch to become available after a reset.

5. Click on **Apply Changes**

6. Once logged into the switch select **Change Configuration**.

 Note: The switch will then reboot (taking 2-3 minutes to do so)

 In the left-hand pane click on **System > IP addressing** to expand it and click on **IP Interface parameters**

7. Set the **IP Address** to **169.254.252.1** see screen shot above.
8. Click on **Apply Changes**. The connection to the switch will then be lost since the Merging Network card still has a fixed IP in a different range. Continue with points 9 to 12 to put the card back in IP auto-configure mode.

9. Open the **Windows Control Panel** and open the **Network and Sharing Center**.

10. Select **Change adapter settings**

11. Locate and select the Merging Technologies PCIe Ethernet card connection and Right-click on it.

12. Select **properties** from the drop-down menu to open the **Local Area Connection Properties** dialog:

![Local Area Connection Properties dialog](image)
13. Select **Internet Protocol Version 4 (TCP/IPv4)** to select it and click on **Properties** to open the **properties** dialog:

![Internet Protocol Version 4 (TCP/IPv4) Properties dialog]

14. This time choose the **Obtain an IP address automatically** radio button.

15. Click on **OK** to accept the settings and close the dialogue. Repeat to accept the settings and close the **Local Area Connection Properties** dialog.

Switch IP address

Now you can log into the switch using **http://169.254.252.1**

Note: If you cannot access the switch once it is set to **Obtain an IP address automatically** try setting the adaptor to **169.254.252.2** and retry. Ensure that after configuring the switch the setting is changed back to **Obtain an IP address automatically**.
Switch Configuration

The following steps will help you to configure the Switch for dedicated RAVENNA networking. First ensure you can access and log on to the Switch.

1. Open the System > DHCP server > DHCP Server Properties page:

 ![Dell DHCP Server > DHCP Properties page](image)

 Dell DHCP Server > DHCP Properties page

2. Set the parameters as in the screen shot above.

3. Click on Apply Changes.
4. Open the **Switch > Ports > Port Configuration** page and select **Show All**:

5. Set all the **Flow Control** entries to **Disable**:

This setting minimizes latency on the RAVENNA Network.
6. Open the **Switch > Ports > Spanning Tree > STP Port Settings** page:
7. Click on **Show All**

![Screen Shot of STP Port Table]

8. In the STP Port Table window, check all **Fast Link** check boxes as shown in the screen shot above.

Note: Please ignore the 4 numeric entries in the **Path Cost** column and the **Port State** entries since these are derived from your current connection so these values may vary.

9. Click on **Apply Changes**.
10. Open the Switch > Multicast Support > Global Parameters page.

![Dell Switch > Multicast Support > Global Parameters page](image)

11. Set both drop-downs to **Enable** as in the screen shot above.
12. Open the **Switch > Multicast Support > IGMP Snooping** page:

![Dell Switch > Multicast Support > IGMP Snooping page]

13. Configure IGMP Snooping as in the screen shot above. **Querier IP Address** needs to be the fixed IP address of the switch itself.

14. Click on **Apply Changes**.
15. Open the **Quality of Service > CoS Global Parameters > CoS Settings** page:

17. Click on **Apply Changes**.
18. Open the **Quality of Service > DSCP to Queue Mapping** page:

19. Configure DSCP to Queue Mapping as in the screen shot above.

20. Click on **Apply Changes**.

21. Log out of the switch which is now configured properly.
Connecting Multiple Horus' to the Switch

Once the switch is configured everything is prepared for connecting multiple Horus' to the switch ports.

1. Connect an RJ45 Ethernet patch cable (CAT5E or 6 STP) from the Merging PCIe Ethernet card (NET-MSC-GBEX1) to the switch.

2. Connect an RJ45 Ethernet patch cable (CAT5E or 6 STP) from each of your Horus devices Pri (primary) port to ports on the Switch.

3. Once you power up the Horus' one of the Horus' will automatically be chosen as Master PTP and the other Horus' will be PTP Slaves.

Note: When several Horus' are on the same network then one of them will be elevated automatically to PTP Master and the others configured as PTP slaves (see Horus User Manual).

4. You are now ready to work in RAVENNA mode.

Note: PTP sync does not permit synchronization to word clock or an audio input. However, this is not an issue since all Horus' will be synchronous. Only one Horus can lock to an external source; it then becomes the PTP master; other Horus’ switch automatically to PTP slave (see Horus User Manual).
8 Contacting Merging

International Office:
Merging Technologies S.A.
Le Verney 4
CH-1070 Puidoux
Switzerland
Phone: +41 21 946 0444
Fax: +41 21 946 0445

UK:
Merging UK (Emerging)
23 Easter Park
Benyon Road
Silchester
Reading UK
RG7 2PQ
Phone: +44 (0) 118 402 5090
Fax: +44 (0) 870 1231747
Email: sales@merginguk.com

USA:
Merging USA (Independent Audio)
43 Deerfield Road
Portland,
ME 04101-1805
United States of America
Phone: +1 (207) 773 2424
Fax: +1 (207) 773 2422

For all documentation inquiries or suggestions for improvement:
http://www.merging.com
Index

C
Connecting Multiple Horus’ to the Switch 54
Contacting Merging 55
CoS Settings 52

D
DHCP Server Properties 46
DSCP to Queue Mapping 53

E
Easy Connect 13
Accessing 13
Activated Connection Example 16
Additional Details 17
Always on top 18
Connection Status 16
Local Computer RAVENNA Host 14
Lock to Pyramix Sampling Rate 17
Making a connection 14
multiple Horus 18
Network Accessible RAVENNA Device 14
TimeCode Connections 16
Troubleshooting 18

H
Horus/Hapi
LTC I/O Native 21
Horus/Hapi TimeCode Setup 19

I
IGMP Snooping 51
Internet Protocol Version 4 (TCP/IPv4) 42, 45
Introduction 5
Introduction to RAVENNA Technology 7
IP addressing 43

L
Local Area Connection Properties 41, 44
LTC IN-OUT for Pyramix Native 20

M
Merging RAVENNA Easy Connect 13
MT Discovery 10
Actions 12
Additional Information 12
Color Coding 12
Groups 11
Overview 10
Using 11

N
Network Switch 30

Q
Quality of Service 9

R
RAVENNA Technology 7
Recommended certified switch 30

S
STP Port Settings 48

T
TimeCode
3rd Party DAW Setup Mac 23
3rd party DAW Setup Windows 22
Horus/Hapi Setup 19
Magix Setup 29
Masscore Setup 21
Nuendo 5 Setup 26
Pro Tools Mac Setup 24
Pro Tools PC Setup 25
Pyramix Native Setup 20
Reaper Setup 28
Setup 19
TimeCode Connections 16