No part of this documentation may be reproduced in any form whatsoever or be stored in any data retrieval system without prior written permission of the copyright owners.

This documentation is supplied on an as-is basis. Information contained within this documentation is subject to change at any time without notice and must not be relied upon.

All company and product names are ™ or Registered Trademarks ® of their respective owners. Windows 7 is a trademark of Microsoft Corporation. Lion, Core Audio and Bonjour, the Bonjour logo, and the Bonjour symbol are trademarks of Apple Computer, Inc. RAVENNA is a registered trademark of ALC NetworX GmbH and is used here under licence.

Merging Technologies makes no warranties express or implied regarding this software, its quality, performance, merchantability or fitness for a particular purpose. The software is supplied “as is” you, the purchaser, are assuming the entire risk of the results of using this Merging Technologies software.

In no circumstances will Merging Technologies, its owners, directors, officers, employees or agents be liable to you for any consequential, incidental or indirect loss or damages including loss of time, loss of business, loss of profits, loss of data or similar resulting from the use of or inability to use the Merging Technologies hardware and or software or for any defect in the hardware software or documentation.

Product features and specifications are subject to change without notice.

© Copyright Merging Technologies Inc. 2017. All rights reserved
Contents

1 Introduction 6
Scope 6

2 Introduction to RAVENNA Technology 7

3 Merging RAVENNA ASIO Driver 10
ASIO 10
System Requirements 10
Installing the RAVENNA ASIO Driver 12
TimeCode over Physical MIDI (MTC) 15
Bundled Applications and Documentation 16
Troubleshooting 17
RAVENNA ASIO Latencies 19
RAVENNA ASIO DRIVER I/O vs. System Capabilities Typical Capabilities 20

4 Horus / Hapi Preamp Remote Control 22
Pro Tools on PC 22

5 Pyramix Native 24
Pyramix RAVENNA Native Configuration Recommendations 24

6 General Troubleshooting 25

7 MT Discovery 26
Overview 26
Using MT Discovery 27
Additional Information 28

8 Merging RAVENNA Easy Connect 29
Overview 29
Accessing Easy Connect 29
Additional Details 33

9 Contacting Merging 35
International Office: 35

10 Index 36
RAVENNA is a solution for real-time distribution of audio and other media content in IP-based network environments. It was designed primarily by a company called ALC NetworX. RAVENNA utilizes standardized network protocols and technologies and can operate in existing network infrastructures. Performance and capacity scale with the capabilities of the underlying network architecture.

For more information about RAVENNA technology please see: Introduction to RAVENNA Technology on page 7 and:

http://ravenna.alcnetworx.com/

Scope

This document is intended to get you up and running RAVENNA in ASIO with your Merging Technologies network interface on your PC Windows system. For more detailed information about the Horus, Hapi and Pyramix and Ovation software please see their specific Guides.
2 Introduction to RAVENNA Technology

Scope
The information in this chapter is provided as background of the philosophy and technology behind RAVENNA.

Overview
RAVENNA is a technology for real-time distribution of audio and other media content in IP-based network environments. Utilizing standardized network protocols and technologies, RAVENNA can operate on existing network infrastructures. RAVENNA is designed to meet the strict requirements of the pro audio market featuring low latency, full signal transparency and high reliability.

RAVENNA is suitable for deployment in many pro audio market segments including broadcast, live sound, studios the install market and location music recording. Possible fields of application include (but are not limited to) in-house signal distribution in broadcasting houses, theaters, concert halls and other fixed installations, flexible set-ups at venues and live events, OB van support, interfacility links across WAN connections and in production & recording applications.

In short, it represents a new take on the third generation form of audio interconnect, where the first generation of interconnect is analogue point-to point copper, the second generation uses digital codes representing the analogue signal, conveyed point to point over copper or fibre-optic cabling and the third generation also employs digital codes representing the analogue audio but transported as packets over network infrastructure.

RAVENNA is very well suited to areas where complex audio routing / mixing systems are deployed. For example; in-house distribution in broadcasting centres and WAN connections to satellite studios, OB vans, where hook up to venues with the same infra-structure becomes simple, in venues themselves for local signal distribution and connection to just such OB vehicles when required. For live events and concerts it offers highly flexible temporary installation possibilities and in theatres, opera houses and houses of worship it can provide low cost local signal distribution. Notwithstanding all of the above, RAVENNA is also an excellent candidate for relatively simple point to point interconnects such as computer to audio interface.

However, RAVENNA, leaving aside the other advantages touted, is an open standard based on the ubiquitous IP protocol. Specifically, protocol levels on or above layer 3 of the OSI reference model. Since RAVENNA is purely based on layer 3 protocols, it can operate in most existing network environments. Unlike layer 1 or layer 2 solutions, it does not, in principle, require its own network infrastructure. IP can be therefore be transported on virtually any LAN and is used as the base layer for communication across WAN connections (including the internet). Although in most cases Ethernet will be deployed as the underlying data link layer, IP is in general infrastructure-agnostic and can be used on virtually any network technology and topology. All the protocols and mechanisms used in RAVENNA are based on well established and commonly used methods from the IT and audio industries and comply with various standards defined and maintained by the international standards bodies.
Basic Components

A RAVENNA system requires a carefully configured IP network, a master clock device and any number of RAVENNA enabled I/O nodes. The master clock can be either a dedicated device or any RAVENNA node capable of serving as a grandmaster. The preferred time domain reference is GPS. Simple streaming across a network can be achieved without any synchronization at all but in pro audio applications tight synchronization between all devices and streams is absolutely mandatory. While playback synchronization in most applications requires sample accuracy, one goal for RAVENNA is to provide superior performance by offering phase-accurate synchronization as an option thus rendering separate reference word clock distribution throughout a facility or venue redundant.

Flexibility

The system design approach allows for operation with or without centralized services for configuration / connection management. ALC NetworX recommends that basic device configuration (e.g. initial settings and setup of audio streams) should be executed via a web interface (http). However other methods may be used in addition or as an alternative.

Device discovery is accomplished with DNS-SD (via an mDNS or DNS service). In small networks, without DHCP / DNS servers, the zeroconf mechanism - a fully automatic, self-configuring method - is used for auto-IP assignment and service advertisement & discovery.

Streams available on the network are represented by SDP records with extended information (i.e. a clock domain identifier, RTP time stamp association etc.) Clients can connect to streams via RTSP or SDP/http.

Resilience

As you would expect RAVENNA supports redundancy. Although modern network infrastructures can be configured to guarantee a high level of transport security and reliable 24/7 operation for added security there is the option of full network redundancy. Each RAVENNA device can include two independent network interfaces which can be connected to independent physical networks. By duplicating any outgoing stream to both network links, any destination device will receive the full stream data on both network interfaces independently. If data from one link is corrupted, or one network link fails completely, the uncorrupted data is still present on the other link. Changeover in the event of the failure of a network link is automatic.
Streaming

Unicast

Unicast (one-to-one) is used in application scenarios such as an individual stream between two devices (e.g. a multi-channel stream between a console and a recorder/DAW). This uses a point-to-point connection between the sender and receiver. Since each additional receiver adds its own individual connection network traffic increases with every additional unicast stream.

Multicast

Multicast (one-to-many) streaming is used in scenarios where a single source is to be distributed to many potential recipients (e.g. program stream to journalists' desktops). At the sending end this only requires one connection per stream. Network switches are aware which participants (receivers) should receive any particular multicast and forward packets only to registered nodes. In multicast set-ups the network traffic only increases on the last (closest to receiver node) segment(s) of the network path.

Infrastructure

The network infrastructure must be able to transport IP packets and must support a number of standard operating protocols, e.g. RTP/RTPC for streaming since this is used widely and supports a wide variety of standard payload formats. Some of these formats are mandatory for all RAVENNA devices, others are optional. For example this protocol offers the possibility of standard media player applications subscribing to RAVENNA streams. Synchronization across all nodes is achieved via the IEEE 1588-2008 (PTPv2 Precision Time Protocol). This is another standard protocol which can be used on IP. PTPv2 provides a means for synchronizing local clocks to a precision as defined in AES-11. Accurate synchronization can even be achieved across WAN connections when GPS is used as a common time domain.

Quality of Service

For the QoS (Quality of Service) protocol DiffServ has been chosen since it is widely supported by most modern managed switches. Since other traffic can co-exist with RAVENNA on the same network, RAVENNA traffic must be on the fast track. RAVENNA packets are assigned a high priority classification to ensure expedited transport across the network, while other packets with lower priority are treated as best-effort traffic. Even within RAVENNA there are different priorities assigned to different classes of traffic. Synchronization is assigned the highest priority, immediately followed by any real-time media traffic, while control and configuration traffic will be on a lower priority level. Any non-RAVENNA traffic would receive the lowest (standard) priority and be treated as best-effort traffic. Performance and capacity scale with the capabilities of the underlying network architecture.
3 Merging RAVENNA ASIO Driver

Overview
The RAVENNA ASIO Driver is intended for owners of Horus / Hapi hardware using Windows 7 Professional 64-bit or Windows 8.1 Professional 64-bit who wish to work in ASIO RAVENNA mode.

ASIO
Steinberg’s Audio Stream Input/Output (ASIO) provides audio stream connectivity between software applications and audio hardware on Windows.

System Requirements
Wintel platforms tend to increase in number of cores, speed and performance at a tremendous rate. New and faster processors are released almost on a monthly basis.

We maintain a list of up to date PC configurations in the Support Section of our website at:

http://www.merging.com/pages/pcconfig

Refer to the Merging RAVENNA recommendations (Minimum CPU requirement - QuadCore)

Certified PC Operating Systems (OS)
We recommend installing the ASIO driver under Windows 7 Professional 64-bit or Windows 8.1 Professional 64-bit.

Note: If you need a 32-bit install you MUST remain with RAVENNA ASIO Driver v9.1. The ASIO driver is NOT supported under XP or Vista.

Warning: NEVER attempt to install the Driver on Windows NT Server

The ASIO Driver has been tested and qualified on Windows 7 Professional 64-bit and Windows 8.1 Professional 64-bit.

Notes
- Available as of the release of Pyramix v10
- The RAVENNA ASIO driver supports up to 8fs (384kHz DXD/DSD)
- Windows 7 - 32bit & 64bit (make sure that you download the correct installer)
- The ASIO Driver is not multi-client. I.e. it cannot be used with multiple applications at the same time. Only one application at a time can use the ASIO Driver on the same system.
- A separate sound card for other general work is recommended.
Numbers of inputs and outputs available

- 1fs (44.1kHz / 48kHz) = 128 I/O
- 2fs (88.2 kHz / 96kHz) = 64 I/O
- 4fs (176.4 kHz / 192 kHz) = 32 I/O
- 8fs (352.8 kHz / 384 kHz / DSD64 / DSD 128 / DSD 256 = 16 I/O

Tips

- Ensure the ASIO clock is activated (set to Auto) under the Network Interface menu setup > advanced
- Sampling rate setting changes must be done on the Network Interface.
- The ASIO host will follow the Network Interface sampling rate changes
- Disable your Antivirus and your Windows Public Firewall

Note: The MassCore PCIe Ethernet card NET-MSC-GBEX1 cannot be used with the RAVENNA ASIO driver since it is specific to MassCore. For Native use on PCs with PCI-e slots the Merging Technologies NET-INT-GBEX1 card is available. (Please contact your Merging Technologies Sales Partner for details.)
Installing the RAVENNA ASIO Driver

Prerequisites
The Merging RAVENNA ASIO Driver can be installed on PC systems which do not have Pyramix installed, but at least one Horus / Hapi is required before the Driver will function if other RAVENNA devices are present.

Installation Procedure
1. Disable Windows UAC. (User Account Control) Set it to Never Notify and restart the PC.

2. Download the latest Merging RAVENNA ASIO Driver from:
 http://www.merging.com/horus/download

3. Be aware that separate 32bit and 64 bit versions are available and certified under Windows 7 only. Verify your current OS configuration and then download and install the appropriate RAVENNA ASIO driver version.

 Note: The installer may warn of pending requirements (Bonjour & Microsoft Redistributable C++ 2008 SP1.) Accept and proceed with these installations.
4. When installation is complete accept the software licence agreement
5. Restart the computer.
6. When the PC has rebooted open the RAVENNA ASIO Panel.
 Windows Start Menu - All Programs > Merging Technologies > RAVENNA ASIO

7. Configure Merging RAVENNA ASIO Settings:
 • **Local Adapter:** lists all available network ports. Select the network port the Horus / Hapi is connected to.
 • **Buffer size:** Buffer sizes available are: 512 - 256 - 128 - 64 [smpl]. Based on 1fs (44.1kHz/48kHz) A buffer size of 256 samples is recommended.
 • **Number of Channels**
 - **Inputs:**
 - Maximum of 128 Inputs and Outputs @1fs
 - **Outputs:**
 - Maximum of 64 Inputs and Outputs @2fs
 - Maximum of 32 Inputs and Outputs @4fs
 - Maximum of 16 Inputs and Outputs @8fs
 • **Status - State:** Shows the connected ASIO Host or no ASIO Host connected

8. Configure the application you wish to use (Pyramix or other DAW) so that the I/O connections use the Merging RAVENNA ASIO Driver
9. For Pyramix users the VS3 Control Panel must first be opened and the **Merging RAVENNA ASIO driver** selected under **I/O Selection -Driver name**:.

10. Ensure that the Horus / Hapi is connected to correct Gigabit Ethernet port and launch the DAW application.

Note: VS3 Control Panel Error. If you encounter an error such as: **NIC Adapter not present** ensure that the Horus / Hapi is NOT connected to the MassCore NET-MSC-GBEX1 Ethernet interface card. (Not supported for RAVENNA ASIO.) The Horus / Hapi should be connected to the system gigabit Ethernet port selected in the **RAVENNA ASIO Control Panel**. Also ensure that the VS3 Control Panel is configured to use ASIO.
TimeCode over Physical MIDI (MTC)

Horus/Hapi firmware supports the transport of TimeCode over physical MIDI (MTC) using the DIN connectors on the Sync breakout cable (part code: CON-D15-VTC). TimeCode is transmitted to the workstation via the network (RAVENNA connection).

Horus/Hapi Hardware Prerequisite

Please refer to the Horus or Hapi User Manuals to find details: The Ethertube dip switches (1 &2) must be set to OFF to enable physical MIDI support over the Sync Breakout cable. (part code: CON-D15-VTC).

Setup

Horus / Hapi MIDI DIN in/out connectors be used from within any DAW running on a PC.

In order to setup a Horus / Hapi MIDI port in Windows follow this procedure:

1. Check the Horus / Hapi firmware version, firmware 3.1.0 b28867 or above is required.
2. Connect Horus / Hapi to the system through the Ethernet port.
3. Download rptMIDI from here:
 http://www.tobias-erichsen.de/wp-content/uploads/2012/08/rtpMIDI_1_0_11_227.zip
4. Install rptMIDI.
5. Start rptMIDI.

6. In the My Sessions section (top left) click on the + button to add a new entry.
7. In the Session section (right) rename the entry in the Local name: field to e.g. Horus_80157 MIDI DIN.
8. In the Directory section (bottom left) select the Horus_80xxx_midi_din module entry to add it to the Participants list.
9. At the top of the Session section check the Enabled box to enable the session.
10. Check that the Latency field is close to 0 ms. If not, open the MTDiscovery application and check that the Horus is connected.
11. Close the rptMIDI control panel.
Bundled Applications and Documentation

Additional applications and documentation are installed with the Merging RAVENNA ASIO drivers.

Look in the Windows Start menu - All Programs > Merging Technologies > to find the entries below:

> **Documentation**
The folder contains documentation on all applications and utilities.

> **MTDiscovery**
MT Discovery is a standalone application that searches your network for Bonjour Services. It allows quick and easy access to Merging's Web Services based on Bonjour, such as the Horus configuration page. These pages will open in your computer's default browser.

Users can also use MT Discovery for Horus / Hapi remote access and in order to update their Horus / Hapi Firmware. *Please see: MT Discovery on page 26*

> **RAVENNA Easy Connect**
The Merging RAVENNA Easy Connect utility is included in the ASIO Drivers package. This utility enables Horus / Hapi users to connect the RAVENNA visible streams and route the desired I/Os. *Please see: Merging RAVENNA Easy Connect on page 29*

> **Merging RAVENNA ASIO Driver panel**
This will open the **RAVENNA ASIO Driver Settings** for configuration

Note: The custom installation of the RAVENNA ASIO drivers allows for the MTDiscovery and RAVENNA Easy Connect applications to be omitted from the installation.
Troubleshooting

RAVENNA ASIO Panel
Please close the DAW application before making changes. Restart the DAW after accepting the changes.

Note: Sampling Rate changes must be made on the Horus / Hapi. The DAW will follow the Horus / Hapi sampling rate.

Buffer size recommendations
Merging recommends setting the buffer size to 256 samples.

Latency and clicks
Audible pops and clicks can occur when using some third-party audio interfaces or depending on the speed of the processor. To avoid this problem increase the Hardware Buffer size for the device. You should aim for the lowest possible I/O buffer size value that doesn’t introduce clicks, pops, and crackles in the audio.

No Playback, no I/Os
There is a potential problem when changing sampling rate. (DAW cursor locked or mismatched sampling rate) In such a case ensure the DAW (Pyramix) is exited first then change the sampling rate on the RAVENNA ASIO panel before re-launching the DAW. (Pyramix) Now check that the Project sampling rate and Horus / Hapi sampling rate match the RAVENNA ASIO panel sampling rate. Re-start if necessary.

On the Horus / Hapi make sure that the ASIO Clock is enabled (auto) under the Horus / Hapi page: SetUp > Advanced

If the problem persists then force a Clear all Connections in Easy Connect (Ctrl + Click on Clear All Connections), restart the PC and Horus / Hapi and make the connections again.

Firewall and Antivirus
Windows Firewall
The Windows Firewall can block communication between MassCore and Horus / Hapi. As mentioned in the install procedure we recommend disabling the Public Network Firewall

Procedure
1. Go to Windows Control Panel > Windows Firewall.
2. Click on Turn Windows Firewall on or off
3. Go to the Public Network section and select Turn Off Windows Firewall

Antivirus
Merging also recommends disabling any Antivirus, as mentioned in the install procedure. Some Antivirus software such as Avast have been known to block the Horus / Hapi discovery and RAVENNA I/O Connections.

RAVENNA ASIO Driver Error When Launching VS3 Control Panel
If you have an error such as unable to bind to the network interface check that Windows UAC (User Account Control) was disabled, as mentioned in the install procedure. Set it to Never Notify and restart the PC.
I/O Connection Naming & Channel Count
When using the RAVENNA ASIO driver the connections enabled in Easy Connect do not display the module name or connection count in the Pyramix Mixer.

For example: If the RAVENNA ASIO Panel has 48 I/Os selected a fixed count of 48 I/O channels (at 1fs) will appear in the Pyramix Mixer. The module naming will be generic. It is necessary to refer to the Easy Connect connections numbering in order to identify the I/O routing.
RAVENNA ASIO Latencies

<table>
<thead>
<tr>
<th>Sampling Rate</th>
<th>Buffer Size</th>
<th>Recommended</th>
<th>Not Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.1 kHz</td>
<td>64 smpl</td>
<td>√</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>128 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>256 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>512 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>48 kHz</td>
<td>64 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>128 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>256 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>512 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>88.2 kHz</td>
<td>64 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>128 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>256 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>512 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>1024 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>96 kHz</td>
<td>64 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>128 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>256 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>512 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>1024 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>176.4 kHz</td>
<td>64 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>128 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>256 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>512 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>1024 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>192 kHz</td>
<td>64 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>128 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>256 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>512 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>1024 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DXD(352.8/384kHz) & DSD</td>
<td>64 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>128 smpl</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>256 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>512 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>1024 smpl</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Potential noise or clicks
RAVENNA ASIO DRIVER I/O vs. System Capabilities

Typical Capabilities

Warning:

- Some system configurations will not be able to support such Input / Output counts. This will depend largely on system configuration.
- If you experience noise or glitches reduce the IO count in the RAVENNA ASIO Panel and enable only what is needed.

(Continues on next page...)
• If you still experience noise or glitches try different Buffer Sizes in the RAVENNA ASIO Panel.
• If using Video in a Pyramix Timeline the recommended buffer size is 256 samples minimum to avoid potential clicks in playback.
• Merging Recommended Desktop systems configured for Pyramix Native (RAVENNA ASIO) are known in general to have better performance than laptops. See here for configurations:
 http://www.merging.com/support/pc-config
4 Horus / Hapi Preamp Remote Control

Pro Tools on PC

Horus / Hapi analog preamps can be controlled directly from within Avid Pro Tools running on a PC. In order to set Pro Tools up for Horus / Hapi preamp control follow this procedure:

1. Check the Horus / Hapi firmware version and update if necessary to **v19734** or above.
2. Connect Horus / Hapi to the system running Pro Tools through the Ethernet port.
3. Download rptMIDI from here:
 ![rtpMIDI control panel]
4. Install rptMIDI
5. Start rptMIDI
6. In the **My Sessions** section (top left) click on the + button to add a new entry.
7. In the **Session** section (right) rename the entry in the **Local name:** field to **HorusPre**.
8. In the **Directory** section (bottom left) select the **Horus_80xxx_midi_pre** module entry to add it to the **Participants** list.
9. At the top of the **Session** section check the **Enabled** box to enable the session.
10. Close the rptMIDI control panel.
11. Open the **MTDiscovery** application and check that the Horus is connected.
Within Pro Tools

12. Open the Pro Tools I/O Setup panel:

![Pro Tools I/O Setup - Mic Preamps tab](image)

13. In the Mic Preamps tab enable Horus PRE #1 etc. check the boxes to the left of the entries.

14. Click on OK to close the I/O Setup panel.

The Horus / Hapi Preamp controls will be available within Pro Tools when the Horus / Hapi Preamps are connected to the Pro Tools Mixer Strip Inputs.
5 Pyramix Native

Pyramix RAVENNA Native Configuration Recommendations

- RAVENNA ASIO users should have Administrator rights.
- Disable WIFI (disable the Wireless adaptor not just the WIFI connection).
- Disable Bluetooth if active (in Windows Device Manager).
- Select the High Performance power plan. (Powerful laptops are often set to be in energy saving mode at times. Create a suitable High Performance power plan if none exists.)
- Set all Antivirus software to OFF.
- Disable the Windows Public Firewall.
- Set Windows UAC (User Account Control) to the lowest level (disabled).
- Set Windows Automatic-Update to notify me.
- Avoid having an active internet connection while running Pyramix.
- Verify the performance of your Native system by running the DPC Latency Checker:

 http://www.thesycon.de/deu/latency_check.shtml
6 General Troubleshooting

RAVENNA: Horus / Hapi & Network configuration

1. First check the IP address of the Horus / Hapi device in Setup page > Advanced > Network
 To be able to see each other, the Ethernet port and the Horus / Hapi must be in the same range of addresses.
 (for example 192.168.xxx.xx).

2. The Horus / Hapi IP address can be set and checked in the Horus / Hapi Setup page > Advanced > Network.

 Note: Some laptops require an Ethernet card driver update (2012) in order to work with Horus / Hapi/RAVENNA in certain address ranges.

Working With Multiple Horus’ / Hapis Over a Network
Please refer to the RAVENNA Network Guide (for Merging Technologies Products) for all details about configuration and setup.

RAVENNA Connections:
If you cannot connect devices in RAVENNA Easy Connect make sure that you have the latest Horus / Hapi Firmware and the latest ASIO driver.

Latency and Buffers
Small buffers have the advantage of low latency in the record monitor path, but also are more taxing on the computer's CPU and could contribute to audio dropouts during record or playback.

Larger buffers have the advantage of making the ASIO Driver more immune to audio dropouts during playback and recording but can cause a noticeable delay when monitoring inputs during recording. In some client applications, performing various tasks will interrupt the ASIO Driver and may result in clicks and pops in audio playback or recording. Choosing a different buffer size can help alleviate this problem.
Overview

MT Discovery is a standalone application that searches your network(s) for Bonjour Services. It enables quick and easy access to Merging Technologies Web Services based on Bonjour, such as the Horus configuration page. These pages will be open in your computer's default browser. MT Discovery can be used to update the Horus / Hapi Firmware. Please refer to the Horus / Hapi User Manual for detailed information about this procedure.

Note: The default web browser is determined by a computer setting, not from MT Discovery. It will most probably be one of the following applications:

- Microsoft Internet Explorer
- Apple Safari
- Mozilla Firefox
- Google Chrome.

Google Chrome or Apple Safari are recommended for use with Merging Technologies products.
Using MT Discovery

Note: The information in this chapter refers to Windows. Mac implementation is similar.

Launch MT Discovery
Launch the MT Discovery application from the Windows Start Menu:

All Programs > Merging Technologies > MT Discovery

or by clicking on the desktop icon.

The MT Discovery application window displays a tree view of all the devices it finds on the Bonjour Network. It refreshes automatically when a device is connected or disconnected.

Groups
MT Discovery will sort all devices into groups automatically (displayed like folders), depending on the characteristics of the devices.

The different groups are:

• RAVENNA Devices
 This group contains devices which have the RAVENNA protocol enabled and sorts them into different subgroups:
 • Horus Devices
 • MassCore Devices
 • Asio Devices
 • Other RAVENNA Devices.
- Emotion Servers
- Pyramix Servers
- VCube MXFix Servers
- Ovation Servers
- Others

The Others group contains all Bonjour devices that could not be identified by MT Discovery. Printers are likely to be found in here.

Note: The number in brackets near a collapsed folder indicates how many devices this folder contains.

Actions

Right-clicking (Ctrl+click on Mac) on an item on the tree view displays a contextual menu, which lists the actions available for the item.

Open

Open is what you will want to do most of the time. It will show the main page of the device in your computer's default web browser. This can also be achieved by double-clicking on a device, or by hitting Enter when the device is selected.

Open Advanced

Open Advanced will attempt to display the main settings page of the device in the computer's default web browser. This can also be achieved by holding down Ctrl (Cmd on Mac) and double-clicking on a device, or by hitting Ctrl + Enter (Cmd + Enter on Mac) when the device is selected.

Note: Some devices will not support this, and your web browser will report a 404 - page not found error. In this case, we recommend you access the main page with command Open, described above, then browse to the setup page in your web browser directly.

Expand / Collapse

Only available for Groups, shows/hides the contents of a folder in the tree view. This can also be achieved by clicking on the +/- sign on the left side, or by double-clicking on the Group name.

Color Coding

The color of RAVENNA Device entries indicates the network they are on. Same color = same network.

![Device Network Color Coding](image)

Note: Horus and MassCore entries must be the same color in order to work together in RAVENNA mode.

Additional Information

The MT Discovery application is located in the following folder:

On Windows

C:\Program Files\Merging Technologies\MTDiscovery

On Mac

TBA

On Linux

TBA
Overview

The RAVENNA Easy Connect utility is installed along with Pyramix and included in the ASIO Driver package. This utility enables Horus / Hapi users to connect the visible RAVENNA streams and route them accordingly to the desired I/Os.

Accessing Easy Connect

When Pyramix is launched with the VS3 Control Panel set to RAVENNA mode the RAVENNA Easy Connect utility is launched automatically and appears in the Windows system tray. Users who have installed the ASIO Driver will also have the utility running in the respective tray.

Pyramix

The 7 Easy Connect dialog is opened by:

View > Windows / Tools > RAVENNA Easy Connect

It can also be opened by clicking on the Pyramix toolbar icon:

Once the dialog is open the connection tree is displayed.

Easy Connect will see all the RAVENNA connections which are activated in the Horus / Hapi module pages (as RAVENNA).
Local Computer RAVENNA Host
The left-hand column of the Easy Connect window shows the connections used on your MassCore system, ASIO host.

![Easy Connect Local RAVENNA Hosts](image)

Network Accessible RAVENNA Device
The top right-hand entry in the Easy Connect window shows the available Horus / Hapi units.

![Easy Connect Network RAVENNA Device](image)

Expanding the Horus / Hapi entry displays the ins (inputs) and outs (Outputs) available. These can be connected or disconnected (from drop down menu). If a Module Output Source is not set to RAVENNA it will not appear in the Easy-Connect Inputs and Outputs list.

![Easy Connect ins and outs](image)

Making a connection
Click on the module to be connected. It will be highlighted once clicked.

![Easy Connect Selected I/O Module](image)
Right-click to access the drop-down context menu. Here you can connect or disconnect the module I/O.

```
Select All
Unselect All
Connect Selected to MassCore (on OCT00059)
Disconnect Selected from MassCore (on OCT00059)
```

Easy Connect Context Menu

Alternatively use the buttons in the lower part of the Easy Connect window to perform the connection or disconnection.

```
Connect Selected
Disconnect Selected
```

Easy Connect Connect & Disconnect buttons

Double-clicking on a RAVENNA module entry will Connect or Disconnect the module.

Once the module connection is made a Green icon will be displayed.

```
AES1 MassCore (on OCT00059) [0-7]
```

Easy Connect Module Connection
Connection Status

- Not connected
- Connected correctly
- Connection Error (see message displayed at bottom of Easy Connect window for details)
- Partial connection

A Partial connection indicates that the connection to the MassCore, ASIO host cannot be made. Please verify that the MassCore, ASIO host is available in the left-hand Easy Connect column. If it is present select the problematic input or output and disconnect it, then reconnect it.

If the MassCore, ASIO host is not present please exit and restart the application.

Note: Each Input and Output module is in blocks of 8 channels (except for Monitoring which is 2 channels)

Once connected the Inputs or Outputs will be available within the Pyramix Mixer for I/O connections.

Activated Connection Example
Once a RAVENNA connection has been enabled it will be made available in the Pyramix Mixer.

In the example below the AD1 input has been enabled:

TimeCode Connections

Note: With a Native system it is **NOT** possible to use Easy Connect to read TC from Horus. In order to do so **rtpMIDI** must be used. Please see: **TimeCode over Physical MIDI (MTC)** on page 15
Additional Details

A warning red sign on the Horus logo along with a pop message will warn the user that the Horus and Pyramix project are not at the same sampling rate.

Configuration error: Roll the mouse over the Horus red warning to display the exact error:

Or look at the bottom of the dialog.

Note: Horus / Hapi and Pyramix sampling rates MUST match in order to enable I/O connections through RAVENNA Easy Connect.

Clear All Connections

All current connections can be cleared by right-clicking on the RAVENNA Easy Connect icon in the Tray to access the context menu and selecting **Clear Connections**.

You can also clear all connections using the button at the bottom of the Easy Connect Window:

This will delete all the local RAVENNA connections made previously for all inputs and outputs. A confirmation pop-up window will appear. Click on **OK** to clear the connections or **Cancel** to abort.

Ctrl + Click on the **Clear All Connections** button will force a delete of **ALL** existing RAVENNA connections. Please be aware that this will clear connections that could be in use by other RAVENNA hosts. Ensure that you know what you are doing.

Lock to Pyramix Sampling Rate

RAVENNA Easy Connect also includes an option to lock the Horus / Hapi to the Pyramix sampling rate.

When active the MassCore system will always ensure that the Horus / Hapi connected to it follows its sampling rate setting.

Note: When running with RAVENNA ASIO drivers the **Easy-Force all connected Devices** option is inactive, since Horus / Hapi is the sampling rate master in such a configuration.
Always on top

An option to display The RAVENNA Easy Connect window can be set to **Always On Top** in top from right-click context menu.

![Easy Connect Always On Top message](image)

Working with multiple Horus / Hapis over a network

If you have multiple Horus’ / Hapis in your environment they must all be connected to a Merging certified switch. Please refer to the RAVENNA Network Guide (For Merging Technologies Products)

Each Horus / Hapi will then appear in your RAVENNA Easy Connect utility where you will see the name of each Horus / Hapi online. You will be able to make each Horus’ Hapi’s I/O connections with the RAVENNA Easy Connect utility.

Troubleshooting

Sudden stoppage of RAVENNA Easy Connect

If the RAVENNA Easy Connect utility crashes or stops simply launch it again from the Windows Start menu under:

All Programs > Merging Technologies > RAVENNA Easy Connect > RAVENNAEasyConnect
9 Contacting Merging

International Office:
Merging Technologies S.A.
Le Verney 4
CH-1070 Puidoux
Switzerland
Phone: +41 21 946 0444

Merging Technologies sales partners:

http://www.merging.com/sales

For all documentation inquiries or suggestions for improvement:

http://www.merging.com
Index

A
ASIO
 Bundled Applications and Documentation 16
 Latencies 19
 Latency and clicks 17
 RAVENNA ASIO Panel 17
ASIO Driver 10

C
Contacting Merging 35

E
Easy Connect 29
 Accessing 29
 Activated Connection Example 32
 Additional Details 33
 Always on top 34
 Connection Status 32
 Local Computer RAVENNA Host 30
 Lock to Pyramix Sampling Rate 33

Making a connection 30
 multiple Horus 34
 Network Accessible RAVENNA Device 30
 TimeCode Connections 32
 Troubleshooting 34

H
Horus / Hapi Preamp Remote Control 22

I
Infrastructure 9
 Installing the RAVENNA ASIO Driver 12
 Introduction 6
 Introduction to RAVENNA Technology 7

L
Latencies 19

M
Merging RAVENNA Easy Connect 29
 MT Discovery 26
 Actions 28
 Additional Information 28
 Color Coding 28
 Groups 27
 Overview 26

 Using 27
 Multicast 9

P
PC Operating Systems (OS) 10
 Preamp Remote Control 22
 Pro Tools on PC 22

Q
Quality of Service 9

R
RAVENNA Technology 7

S
Streaming 9

T
TimeCode Connections 32
 TimeCode over Physical MIDI (MTC)
 Windows 15
 Troubleshooting
 ASIO 17
 General 25

U
Unicast 9

V
Video
 Buffer Size 21